

Data Quality Metrics

Status of the National Data Repository (NDR) work
for Regulators - 2014-2017

Philip Lesslar

Digital Energy Journal Conference
3rd October 2017
Kuala Lumpur

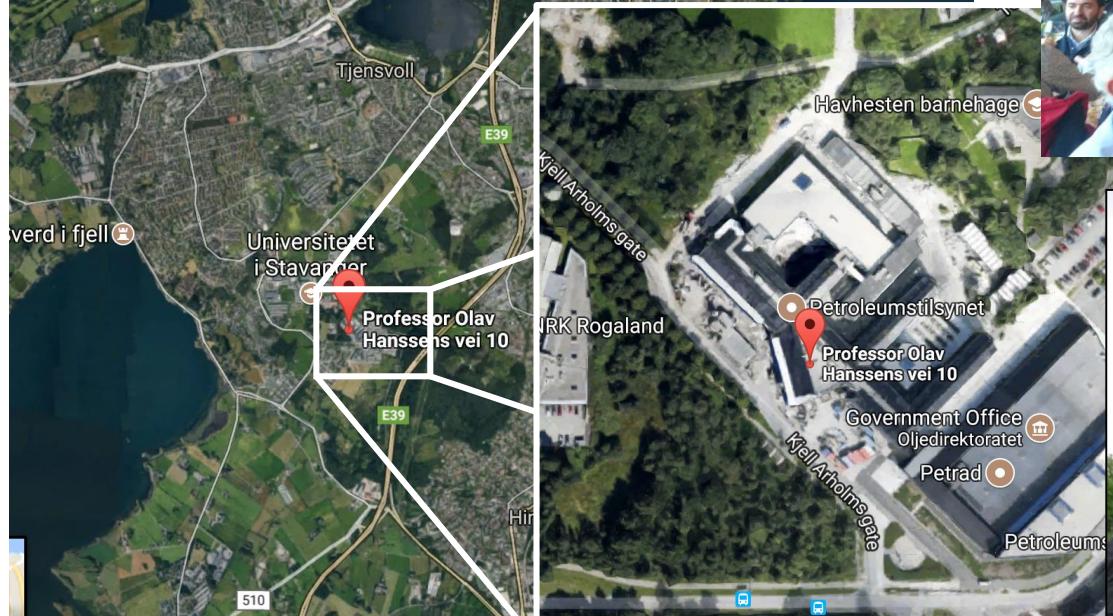
Summary of

2017, 6-8 June, Stavanger, Norway

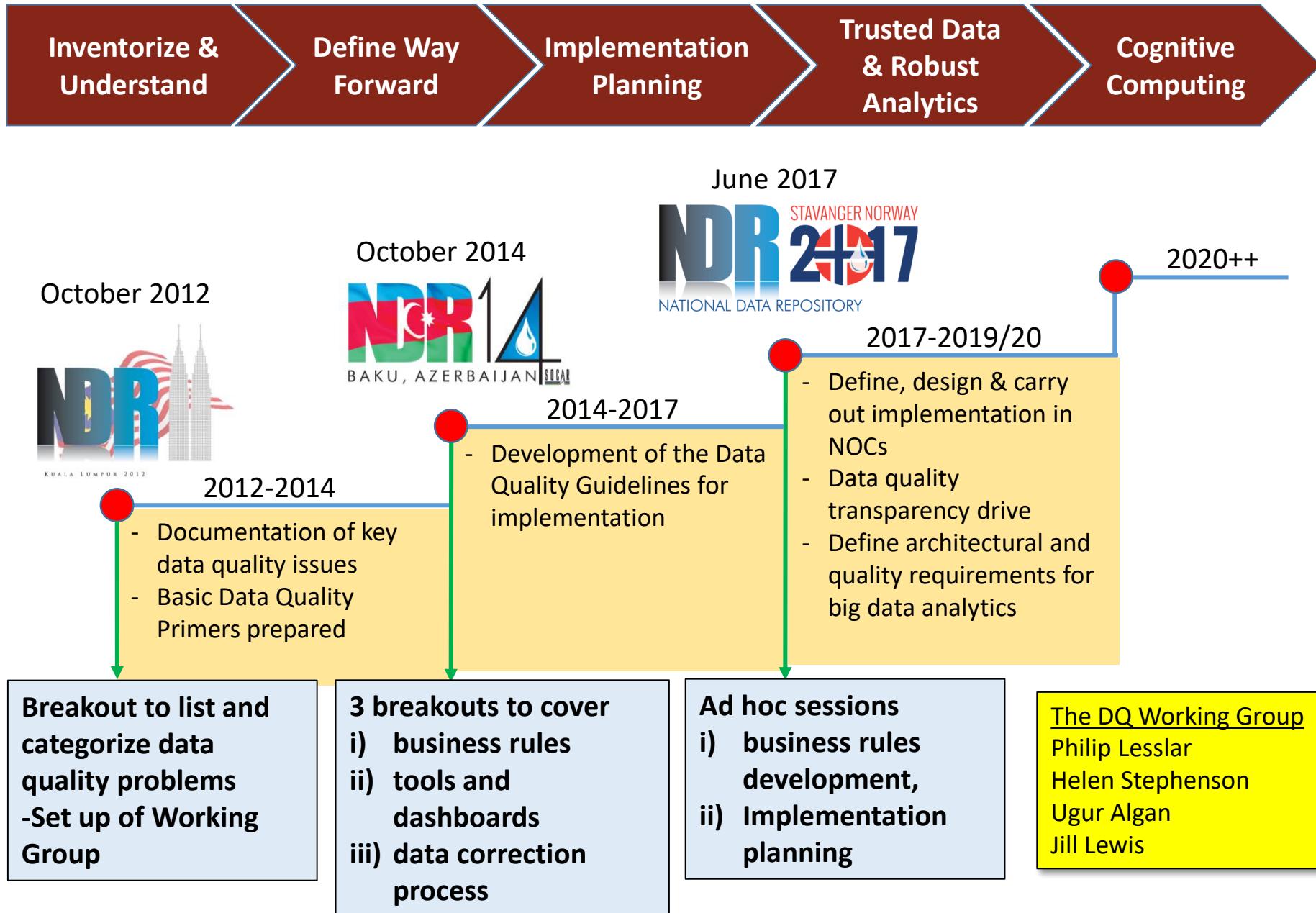
Sponsored by:

Organized by:

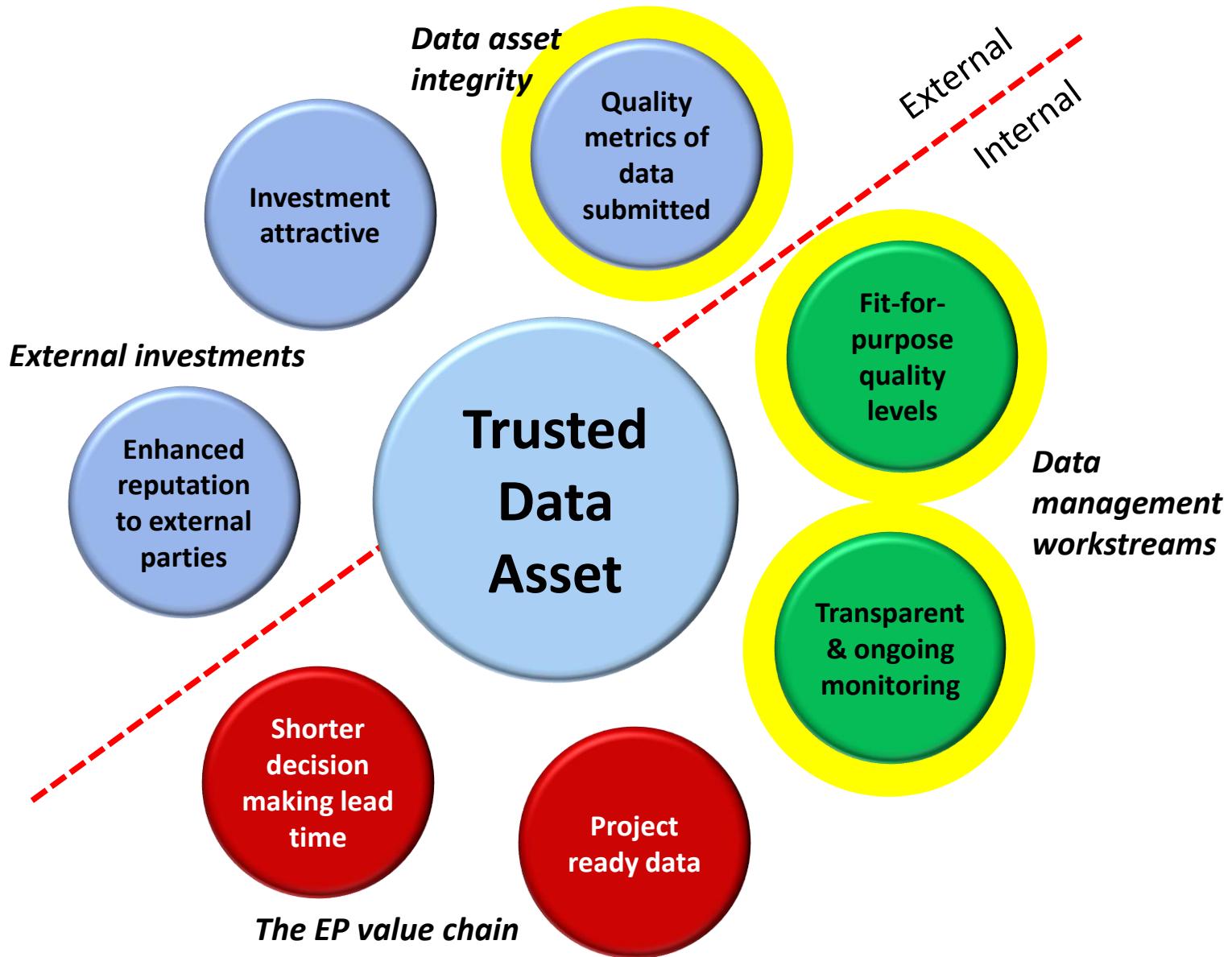
- 165 participants
- Representing 30 countries
- 20 sponsors



Data Quality Metrics – The Journey



Data Quality in the context of NDRs



NDR11 Data Quality Workgroup Team Members

	Name
1	Helen Stephenson
2	Andrew Ochan
3	Marco Cota
4	Fanny Herawati
5	Melissa Amstelveen
6	Sarah Spinoccia
7	Jess Kozman
8	Ugur Algan
9	Richard Wylde
10	Cyril Dzreke
11	Lim TeckHuat
12	Hairel Dean
13	Deano Maling
14	Choo Chuan Heng
15	Iman Al-Farsi
16	Jill Lewis
17	Henri Blondelle
18	Armando Gomez
19	Kapil Joneja
20	Giuseppe Vitobello
21	Gareth Wright
22	Chan Kok Wah
23	Ali Alyahyaee (Scribe)
24	Philip Lesslar (Facilitator)

NDR2014 Data Quality Workgroup Team Members

2	TOOLS & DASHBOARDS
1	Kapil Jonjega
2	Jack Walten
3	Johanda du Toit
4	Gustavo Tinoco
5	Ferdinand Aniwa
6	David Atta-Peters
7	Angus Craig
8	Natalia Rakhmanina
9	Glab Khanuntin
10	Edem Mawuko
11	Alexander Kosolapov
12	Daniel Arthur
13	Eric Toogood
14	Tatiana Vassilieva
15	Henri Blondelle
16	Marianne Hansen
17	Jill Lewis
18	Mikhail Leypunsky
19	Aygun Mamedova
20	Rena Huseyn-zade
21	Irada Huseynova
22	Philip Lesslar

1	BUSINESS RULES
1	Helen Stephenson
2	Richard Salway
3	Abraham Oseng
4	Malcolm Flowers
5	Uffe Larsen
6	Calisto Nhatugues
7	Sylvester Nguessan
8	Gianluca Monachese
9	Jan Adolfssen
10	Lee Allison

3	DATA CORRECTION WORKFLOW
1	Mehman Yusufov
2	Vahid Jafarov
3	Aleksa Shchorlich
4	Ngwako Maguai
5	Joseph Justin Soosai
6	Samit Sencurta
7	Julian Pickering
8	Ugur Algan

What we did : 2014-2017

The National Data Repository

Data Quality Metrics Workstream

Part 1: Background and Case for Change

Prepared by:

The NDR Data Quality Working Group

Philip Lesslar
Helen Stephenson
Ugur Algan
Jill Lewis

The National Data Repository

Data Quality Metrics Workstream

Part 2: Business Rules Fundamentals

Prepared by:

The NDR Data Quality Working Group

Philip Lesslar
Helen Stephenson
Ugur Algan
Jill Lewis

The National Data Repository

Data Quality Metrics Workstream

Part 3 : Implementation

Prepared by:

The NDR Data Quality Working Group

Philip Lesslar
Helen Stephenson
Ugur Algan
Jill Lewis

Part 1: Background and Case for Change

Context and justification to Management

Part 2: Business Rules Fundamentals

Data quality dimensions, key concepts around business rules, 18 data types, 241 rules

Part 3: Implementation

Metrics, dashboards, implementing rules as queries, understanding results, getting the program going

Why implement data quality metrics?

- Without metrics, we cannot measure the quality of the data we have
- Consequently, we cannot show how much quality, fit-for-purpose data there is...

Quality, fit-for-purpose data

Streamlines the business and its workflows

Increases data asset value and investor confidence

Builds essential data condition for effective use of new technologies

Perspective

Business

Enabler for improving data efficiency by up to 90%

NDR

Data Management

Data Science & Analytics

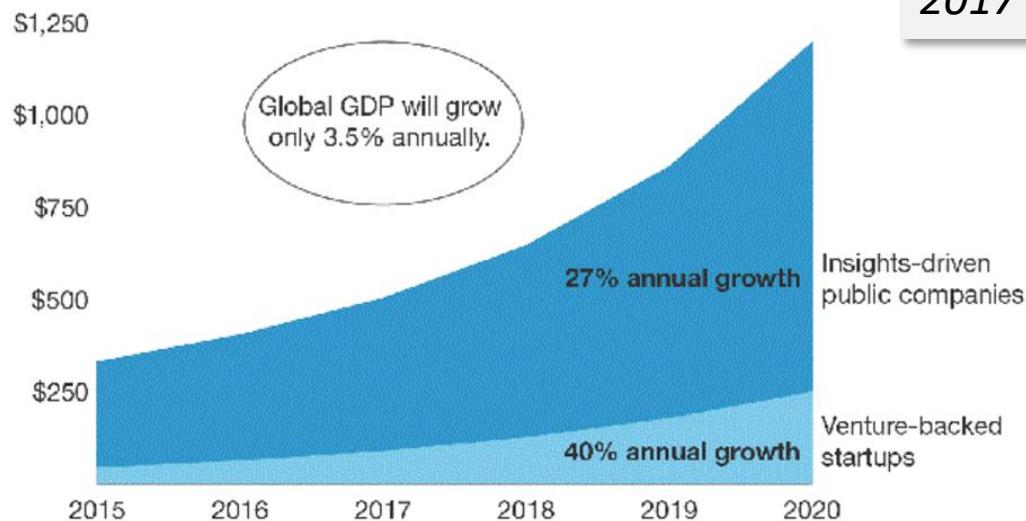
Investment Trends

FORRESTER® RESEARCH

Insights-Driven Businesses Will Steal \$1.2 Trillion Annually By 2020

Predictions 2017: Artificial Intelligence Will Drive The Insights Revolution

Revenue forecast of insights-driven businesses
(\$ billions)

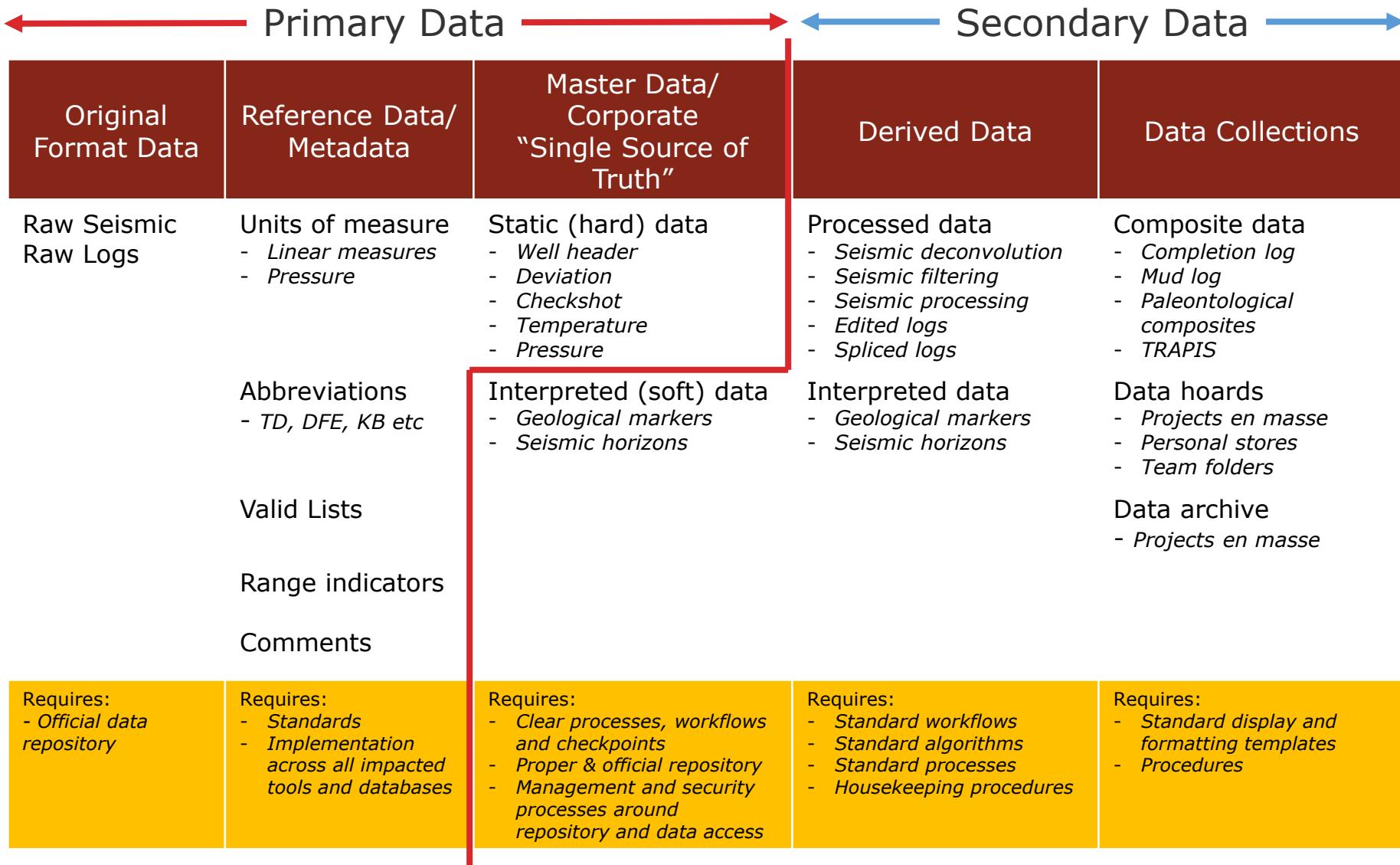


Across all businesses, there will be a *greater than 300% increase in investment in artificial intelligence in 2017 compared with 2016.*

Note: The data point for public companies in 2015 is actual revenue; all other data points shown are estimates or projected figures.

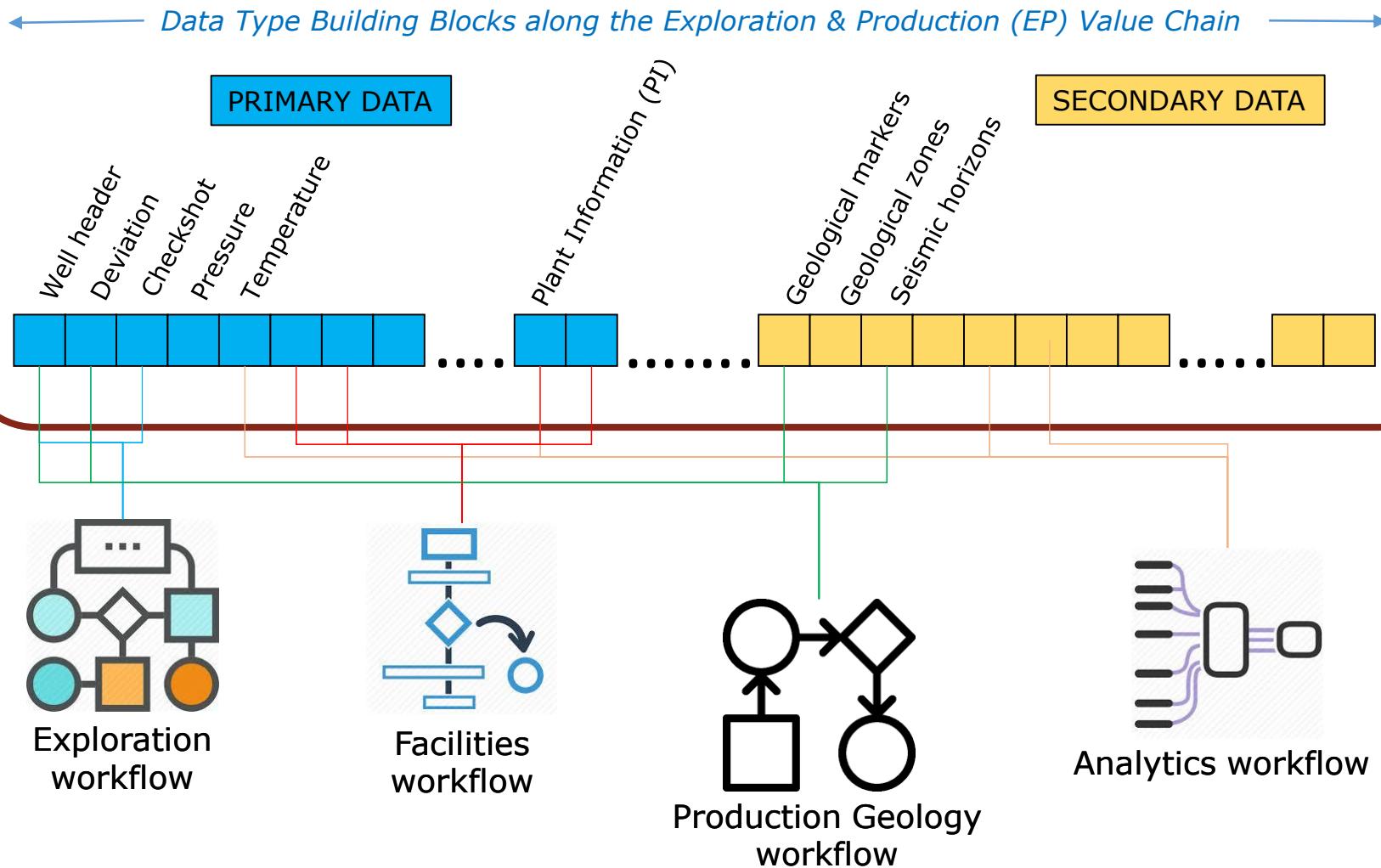
Source: Economic Intelligence Unit, Morningstar, and PitchBook Data

Data Classification – Digital Data (>100 types in Upstream)

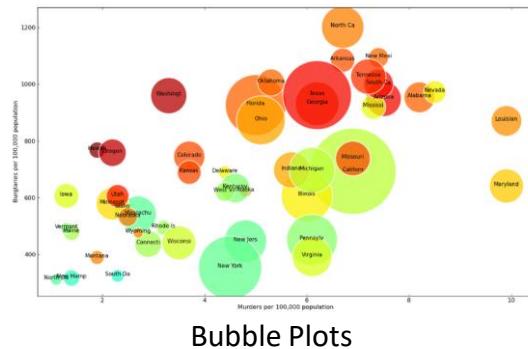


Packaging Quality Data – The Building Blocks

Quality Data Envelope



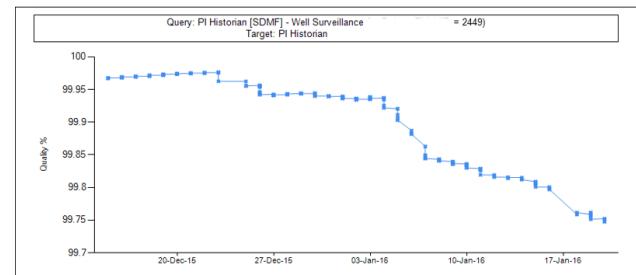
Data Science / Analytics – Typical Deliverables



Bubble Plots

Heat Map

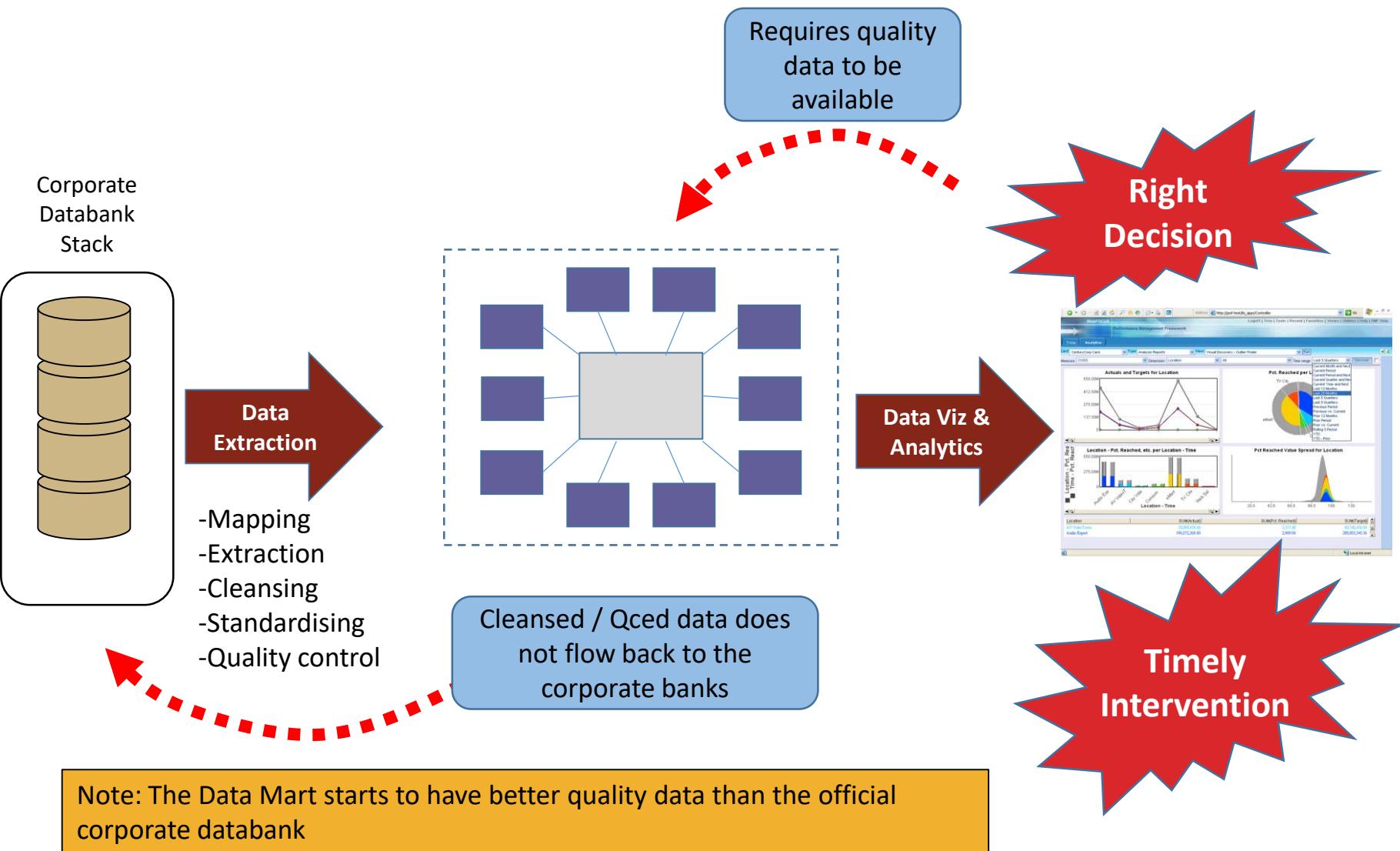
Yahoo Web Analytics



Trend Plot (IQM)

Google Analytics

Data Analytics Conceptual Architecture



Data Quality Error Persistence

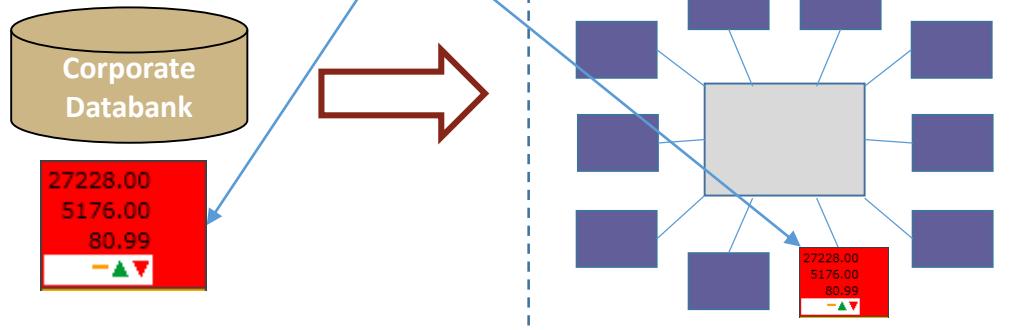
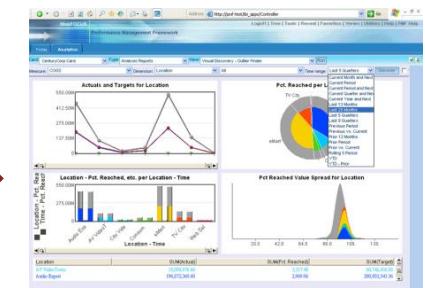
Business Rule:
Well must have
annulus pressure
defined

Query ID	Query Name	Data Type	Quality Type	DD
2448	SCE Test Data Approved By must be defined	Pressure Analysis	Completeness	24805.00 00.00 100.00 ▲●
2131	SCE Test Data must have Function Test defined	Pressure Analysis	Completeness	24805.00 30300.00 88.88 ▼▲▲
2127	SCE Test Data must have Inflow Failure Mode defined	Pressure Analysis	Completeness	24805.00 310.00 28.84 ▲▲
2134	SCE Test Data Positive or Inflow Acceptable Leak Rate (psi/min) must be defined	Pressure Analysis	Completeness	24805.00 18.00 8.84 ▲
2135	Well must have Annulus Pressure defined	Pressure Analysis	Completeness	24805.00 08.00 0.80 ▼—
2130	Well must have String Status defined	Pressure Analysis	Completeness	1382.00 34.00 33.51 ▲
2129	Well must have String Type defined	Pressure Analysis	Completeness	1382.00 00.00 0.0001 ●●●

These errors will only be recognised if you are tracking the quality levels in the source databank

The analytics may not indicate quality levels

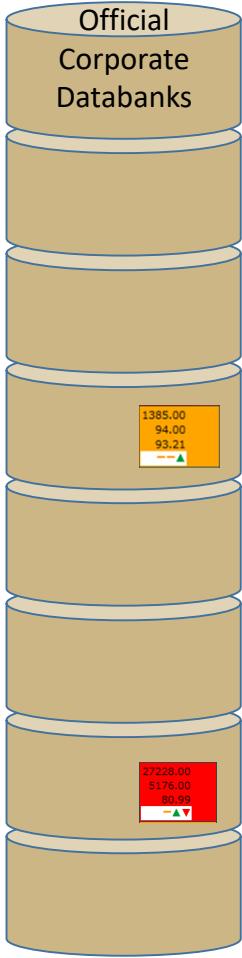
Eg. Annulus Pressure



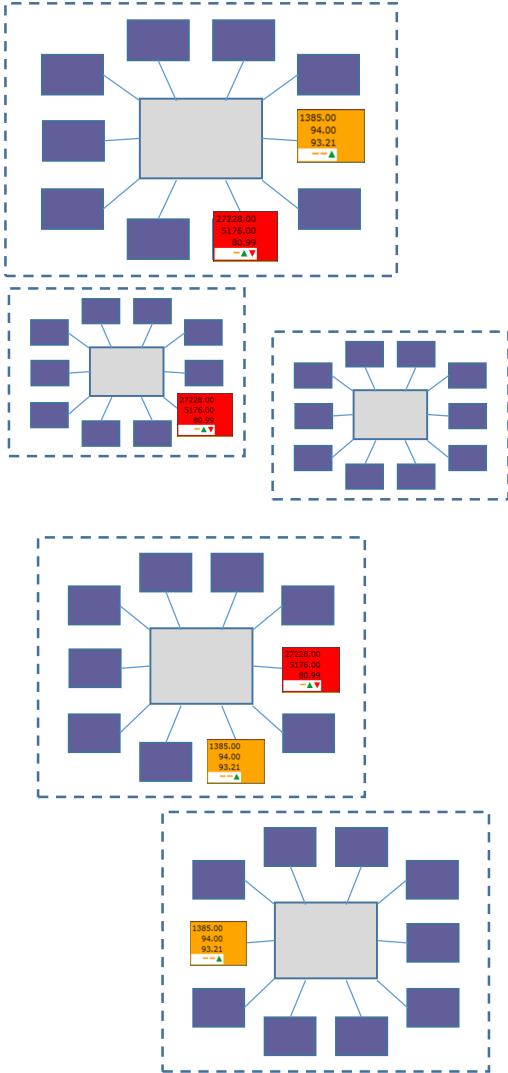
27228.00
5176.00
80.99
—▲▼

Data Quality – Progressive Lopsidedness + Hidden Risks

Poorer Quality



Better Quality

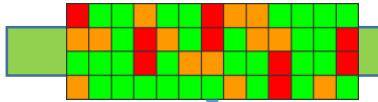


Right Decision?

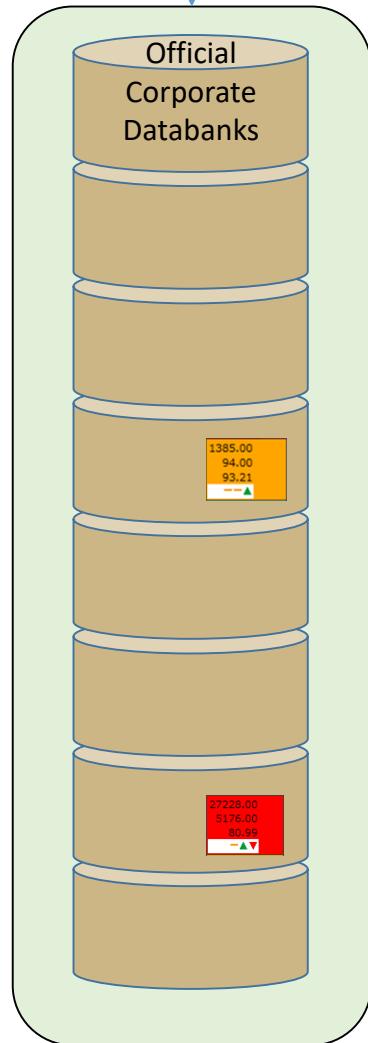
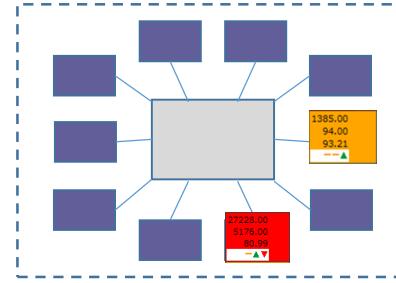
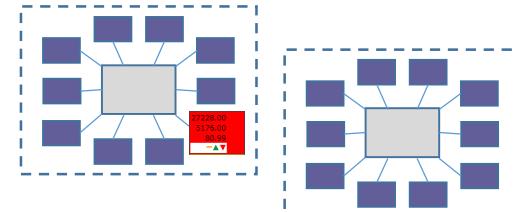
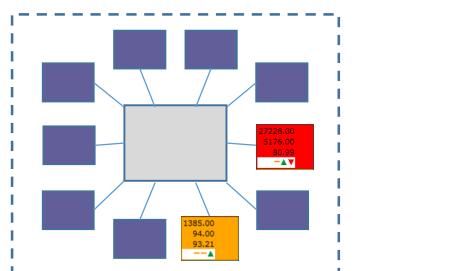
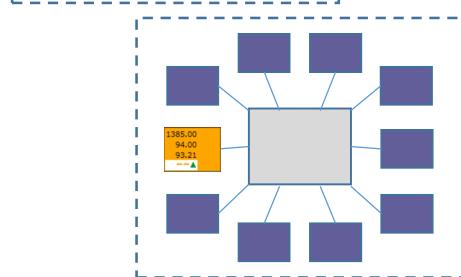
Timely Intervention?

Data Quality Metrics – Tackling Quality at the Source

Data Quality Metrics
Dashboard



Quality throughout the life cycle

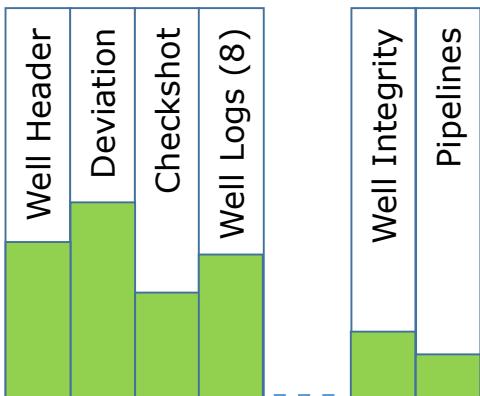
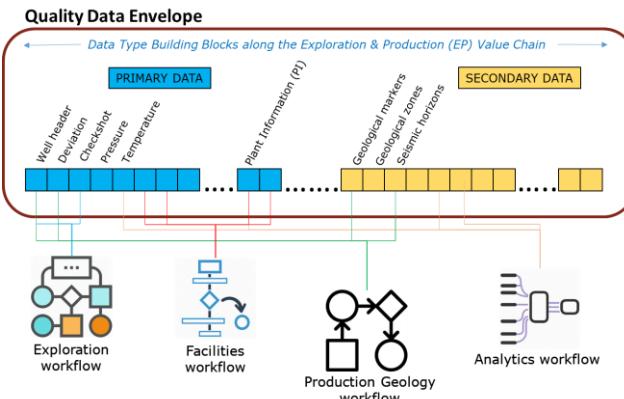


Right
Decision

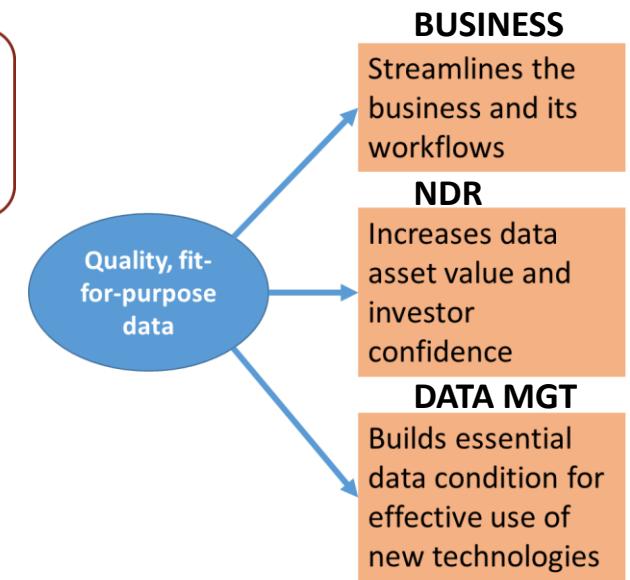
Timely
Intervention

Concluding Remarks

- Understand our DATA INVENTORY
- Implement METRICS to improve QUALITY
- Address data types as building blocks across all 100+ EP types
- We solve business problems and create new opportunities
- While measuring and knowing where we are at all times



- Measure and KNOW how much FIT-FOR-PURPOSE data there is



*Towards data science and big data analytics,
by putting science into data management*

Thank You